
Model-based Testing
experiences from practice

Marten Sijtema

Enschede, The Netherlands

Part 1 Part II Part III

Case-study Model SUT,

JTorX,

Adapter

Part IV

Recipe &

Conclusions

Part 1

Case-study

case study

at Neopost

(Austin, Texas, US)

XBus

Xbus

Client

Client

Client

Client

Client

Client

Possible clients

hardware

G2

software

Navigator Fusion

XBus Protocol

Application messages

Protocol messages

defined by user

service advertisement,

service subscription,

service inquiry,

etc.

test XBus

model-based testing

JTorX
Formal

spec.
SUT

simulates controls

Part II

Model

Part IV

Recipe &

Conclusions

Formal

spec.

Written in mCRL2

Describes behaviour of XBus

= XBus Protocol

= XBus messages + handling

Requirements
for model-based testing

• SUT input-enabled

• SUT logs output

I/O in our case

<Message />

<Message />

<Message />

our model

...

Connect +

ConnectAuthenticate +

Subscribe +

Advertise +

...

main_loop =

our model

...

Connect . ConnectAcknowledge +

ConnectAuthenticate +

Subscribe +

Advertise +

...

main_loop =

our model

...

Connect . ConnectAcknowledge (id) +

ConnectAuthenticate (id) +

Subscribe (id, service) +

Advertise (...) +

...

main_loop =

our model

...

Connect . ConnectAcknowledge (id) +

ConnectAuthenticate (id) +

Subscribe (id, service) +

Advertise (...) +

...

main_loop =

clients_array = struct Client (...)

...

180 lines

Part III

SUT,

JTorX,

Adapter

architecture

Server

implements

Protocol Server

+ receiveConnect(Msg m)

+ sendConnectAck(Msg m)

...

Client

Protocol Client

+ sendConnect(Msg m)

+ receiveConnectAck(Msg m)

...

implements

Message Communication

use use

test architecture

JTorX

Spec.

SUT Test artefacts

C3

C1

C2

C4

Server

XML

output (JTorX format)

input (JTorX format)

output (XML)

Adapter

method call

providing inputretrieving output

Adapter JTorXClient 2

Subscribe!2!MyServicesendSubscribe(‘MyService’)

<Msg type=”ConnectAck” sender_id=”2”>

...

</Msg>

Server

ConnectAck!2

run it!

Part IV

Recipe &

Conclusions

bugs found

• subtle ones

• hard to find without MBT

recipe

• define inputs and outputs

• make SUT input-enabled

• log output

• same rationale in model and SUT

• prepare architecture!

+

simple adapter

recipe@thema

• model security/transaction logic

• what is input?

• what is output?

• how to give input to SUT?

• how to log output from SUT?

• write adapter

conclusion

thank you

